
Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

MULTIMODAL GUITAR: PERFORMANCE TOOLBOX AND STUDY WORKBENCH

Christian Frisson 1,\, Loïc Reboursière 2,[, Wen-Yang Chu 1,], Otso Lähdeoja 3,
John Anderson Mills III 2, Cécile Picard 4, Ao Shen 5, Todor Todoroff 2

1 TELE Lab, Université Catholique de Louvain (UCL), Belgique; 2 TCTS Lab, Université de Mons (FPMs), Belgique;
1,2 numediart Research Program on Digital Art Technologies;

3 CICM, University of Paris 8 (Fr); 4 REVES Lab, INRIA Sophia-Antipolis (Fr); 5 EECE Dept., University of Birmingham (UK)
\ Project coordinator; [Performance Toolbox coordinator;] Study Workbench coordinator

ABSTRACT

This project aims at studying how recent interactive and in-
teraction technologies would help extend how we play the guitar,
thus defining the “multimodal guitar”. We investigate two axes,
1) “A gestural/polyphonic sensing/processing toolbox to augment
guitar performances”, and 2) “An interactive guitar score follo-
wing environment for adaptive learning”. These approaches share
quite similar technological challenges (sensing, analysis, proces-
sing, synthesis and interaction methods) and dissemination inten-
tions (community-based, low-cost, open-source whenever possible),
while leading to different applications (respectively artistic and
educational), still targeted towards experienced players and begin-
ners.

We designed and developed a toolbox for multimodal guitar
performances containing the following tools : Polyphonic Pitch
Estimation (see section 3.1.1), Fretboard Grouping (see section
3.1.2), Rear-mounted Pressure Sensors (see section 3.2), Infinite
Sustain (see section 3.3.2), Rearranging Looper (see section 3.3.3),
Smart Harmonizer (see section 3.3.4). The Modal Synthesis tool
(see section 3.3.1) needs be refined before being released.

We designed a low-cost offline system for guitar score follo-
wing (see section 4.1). An audio modality, polyphonic pitch esti-
mation from a monophonic audio signal, is the main source of the
information (see section 4.2), while the visual input modality, fin-
ger and headstock tracking using computer vision techniques on
two webcams, provides the complementary information (see sec-
tion 4.3). We built a stable data acquisition approach towards low
information loss (see section 4.5). We built a probability-based
fusion scheme so as to handle missing data ; and unexpected or
misinterpreted results from single modalities so as to have better
multi-pitch transcription results (see section 4.4). We designed a
visual output modality so as to visualize simultaneously the gui-
tar score and feedback from the score following evaluation (see
section 4.6). The audio modality and parts of the visual input mo-
dality are already designed to run in realtime, we need to improve
the multimodal fusion and visualization so that the whole system
can run in realtime.

KEYWORDS

Mono- and polyphonic multi-pitch transcription, audio synthesis,
digital audio effects, multimodal interaction and gestural sensing,
finger tracking, particle filtering, multimodal fusion, guitar score
following

1. INTRODUCTION

1.1. The guitar, a marker of telecommunications technologies

The evolution of the guitar as a musical instrument has been
showcasing several milestones in telecommunication engineering
technologies discovered in the last centuries, from vacuum tube
amplification, effect pedals with built-in electronic diodes and chips,
magnetic/piezoelectric/optical sensing, wireless linking, and so on
[20]. The “guitar synthesizer”, extending the palette of guitar sounds
with synthesis algorithms and effect processing, is composed of a
guitar, a monophonic or hexaphonic pickup (the latter allowing
signal analysis of individual strings, with magnetic [62] or op-
tical [55, 46] or piezoelectric sensing) and an analog or digital
processing device (the latter embedding a microprocessor). Ho-
wever, these processing devices still don’t offer today an ergono-
mic, customizable and freely extendable user interface, similar to
the one featured on modular environments for audiovisual analysis
and synthesis such as PureData (pd-extended [57]) and EyesWeb
[28], that can be run on most laptops.

Additionally, guitarists have been developing a body language
vocabulary adding a visual communication to their musical per-
formance [8] (from full-body gestures to facial expressions). The
multiple sensing methods available at a low cost nowadays, from
remote cameras [5, 6] to built-in accelerometers among other sen-
sors [39], would allow to better understand the gestural intention of
the guitarist and emphasize hers/his musical expression, renaming
the instrument an “augmented guitar” [40, 41].

1.2. From guitar learning towards educational games

Plenty of methods have been proposed to learn and teach gui-
tar playing : from the academic study and interpretation of classical
scores, to the more popular dissemination of guitar tabs providing
a simplified notation, or teaching by playing within nomadic com-
munities, playing by ear in an improvised music context, and so
on... However, most of these methods require a long training be-
fore the user is proficient enough to become autonomous.

After efficiency, usability, ergonomics ; an important factor when
designing today’s user interfaces is pleasurability. “Guitar Hero”
[37], a video game featuring a controller inspired by a “diminishe-
d” [2] version of the guitar, consisting in having players challenge
each-others in following a “4 on/off” note version of a guitar score,
has recently caught a lot attention. Blend pleasure and learnability
in educational games [21, 7].

1

http://www.tele.ucl.ac.be
http://www.tcts.fpms.ac.be/
http://www.numediart.org
http://cicm.mshparisnord.org/
http://www-sop.inria.fr/reves/
http://www.eece.bham.ac.uk

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

2. TWO SUBPROJECTS, TWO APPLICATIONS

We proposed two sub-projects blended together in this pro-
ject. While the first is aimed at artists and the second at “standard
users”, while the first would help create artistic performances and
the second would enrich educational learning ; we believed that
these two projects share enough similarities among their work pa-
ckages and deliverables so as to merge them together in a single
eNTERFACE’09 project.

2.1. A gestural/polyphonic sensing/processing toolbox to aug-
ment guitar performances

The purpose of this subproject is to study and refine the me-
thods employed in the sound analysis, synthesis and processing of
the guitar and in the gestural expression of the guitarist, so as to
provide a low-cost and opensource, software and hardware, tool-
box that can allow guitarists to personalize their performance set-
tings, from beginners to experts.

2.2. An interactive guitar score following environment for adap-
tive learning

The purpose of this project is to propose an open-source, community-
based, standalone application to guitar players, from beginners to
experts, for helping them to master musical pieces, with different
adaptive layers of difficulty. The application would be used with
real guitar to perform and follow a musical piece displayed on a
screen, while a real-time polyphonic transcription of the guitarist’s
playing would allow the evaluation of its performance in an en-
joyable way.

3. ARTISTIC SUB-PROJECT : PERFORMANCE
TOOLBOX

For this sub-project we decided to work on every part of the
chain of the use of an augmented guitar :

– Audio analysis : how to use features of the guitar sound to
detect events or to control parameters

– Gestural control : how to use movements made by the gui-
tarist to add control on the sound the computer produces

– Audio synthesis : how can we enhance guitar performance
with hexaphonic effects or not

As these categories are quite general, we decided to focus on
the tools listed below :

– Polyphonic Pitch Estimation (see section 3.1.1)
– Fretboard Grouping (see section 3.1.2)
– Rear-mounted Pressure Sensors (see section 3.2)
– Modal Synthesis (see section 3.3.1)
– Infinite Sustain (see section 3.3.2)
– Rearranging Looper (see section 3.3.3)
– Smart Harmonizer (see section 3.3.4)
To build and test these tools we used a Fender Stratocaster

guitar with a Roland GK3 pickup [65] mounted on in and a String
Port interface made by Keith McMillen [49]. Concerning the pres-
sure sensors, as well as the wireless sensors interface, we used the
ones from Interface-Z [30]. All the tools have been developped for
Max/MSP [15] and/or PureData [57] environments.

3.1. Audio Analysis

3.1.1. Polyphonic Pitch Estimation

As mentioned in the introduction, there are several ways to
capture the vibrations of the six strings of the guitar separately.
Several sources point out that the crosstalk between strings is smal-
ler using piezoelectric pickups than with electromagnetic ones, be-
cause the latter sees the magnetic flux in the coil beneath one string
being influenced by the movement of adjacent strings. But we only
had the possibility to test a GK3 hexaphonic magnetic pickup from
Roland [65].

The YIN method by de Cheveigné and Kawahara [10, 9] is re-
cognized as one of the most accurate pitch estimator when there is
no background noise. While similar to autocorrelation, YIN uses a
difference function that minimizes the difference between the wa-
veform and its delayed duplicate instead of maximizing the pro-
duct. Changes in amplitudes between successive periods will both
yield an increase in the difference function. This compares to the
autocorrelation function, known to be quite sensitive to amplitude
changes, where an increase in amplitude tends to cause the algo-
rithm to chose a higher-order peak and hence a too low frequency
estimate ; while a decrease in amplitude has the opposite effect.
The introduction of the cumulative mean normalized difference
function removes the need for an upper frequency limit and the
normalization allows the use of an absolute threshold, generally
fixed at 0.1. This threshold can also be interpreted as the pro-
portion of aperiodic power tolerated within a periodic signal. A
parabolic interpolation step further reduces fine errors at all F0

and avoids gross errors at high F0. We used the yin~ external
Max/MSP object developed at IRCAM.

In a paper dedicated to guitar patches [63] and also using the
Roland hexaphonic microphone [65], Puckette, who wrote both
fiddle~ and sigmund~ pitch extractors, both widely used wi-
thin Max/MSP and PureData, suggests using the later. We found it
was interesting to combine an time- with a frequency-domain pitch
estimator. yin~ gave overall better results, but we kept the possi-
bility to combine it with sigmund~ as they yielded close results
during stable sections.

The pitch detection algorithm is mainly based on yin~. Post-
processing, based on the quality factor of yin~ frequency extrac-
tion and on the level of each guitar string signal, allows to remove
the spurious notes present mainly during transitions and when the
volume fades out because of crosstalk between the strings. Though
not critical in most conditions, the following parameters allow the
user to fine-tune the pitch detection to his needs :

– Quality threshold : we didn’t let a pitch estimate be taken
into consideration while the average of the last quality fac-
tors was below a user-defined threshold.

– Level threshold : as the coupling between strings is shown
to be higher from higher pitch to lower pitch strings than
in the opposite direction [52], we defined a level threshold
deviation per string, applied cumulatively from string to
string.

– Outside range : an allowed range is attributed to each string,
depending on the tuning and on an amount of semi-tones per
string. This allows to exclude notes that may be detected
outside that range because of coupling or crosstalk.

– Mean-Median divergence, expressed in half tones, and me-
dian window size : the difference between the mean and the
median of the pitch estimates over a user-defined window
length is a good measure of pitch stability.

– YIN-Sigmund divergence, expressed in half tones, allows to

2

http://www.infomus.org/enterface09/
http://www.roland.com
http://www.keithmcmillen.com
http://interface-z.com
http://www.cycling74.com
http://www.puredata.info

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

FIGURE 1: The view meters showing signals coming from the hexa-
phonic microphone on the left and the user parameters of the pitch
estimation on the right

limit note detection when an even higher stability is achie-
ved, at the cost of a bigger latency. But it might be desirable
in some situations.

One issue is to detect a note being played, but another one
potentially as important is to detect the end of a note. There is no
consensus about when a note is ended except the start of a new
note. Several factors make it indeed a difficult task :

– Guitar strings, mainly the lower pitch ones have a very long
decay. The pitch estimation algorithm can keep detecting a
pitch with a good quality factor even when the sound of a
string becomes masked by the other strings for the human
ear.

– String coupling inherent to the instrument design [52] can
have the effect of keeping strings vibrating, mainly open
strings, as they keep receiving energy from the vibration of
other strings.

– Crosstalk between the amplified string signals induced by
the hexaphonic microphone, picking up the sound of ad-
jacent strings, might give a reading even when the string
doesn’t vibrate.

– Depending on the application, one may want to keep the
note living on one string until another note is played ; for
instance, to provide a synthetic or re-synthesized sustain.

– Fingers on adjacent strings, on the touch or near the bridge
can inadvertently damp or re-trigger a note.

For all those reasons it was obvious that we couldn’t provide
a Fit them All method. Instead, we provide a comprehensive set of
parameters that will define when a note is supposed to be conside-
red ended. Conditions that will clear the notes are depicted in Fig.
2. Most of those conditions depend on parameters already tuned
for the pitch detection :

– Quality : clears the note if the yin~ quality falls below the
threshold.

– Level : clears the note if the input level is below the level
threshold associated with the deviation per string as explai-
ned above.

– Outside range : clears the note if its frequency evolves out-
side the range attributed to each string, something that might
happen if the microphone crosstalk bleeds notes from adja-
cent strings.

– Mean-Median divergence : when a note dies or changes, its
frequency changes and the difference between the mean and
the median of the last values increase.

– YIN-Sigmund divergence : in the same way, only very stable
frequencies yield similar results when comparing the yin~
and sigmund~ outputs. Putting a threshold in half-tones
between both outputs allows to clear notes when instability
occurs.

FIGURE 2: There are five conditions that help the user tailor how
notes will be cleared depending on his application.

Those conditions have an effect both on the OSC note output
sent to the Fretboard Grouping patch, on the synthesizer (currently
a simple sawtooth oscillator followed by a resonant filter used only
as a prove of concept) and on the harmonizer algorithm if Mute
harmonizer if cleared notes is selected.

3.1.2. Fretboard Grouping

Hexaphonic pickups appeared in the 80’s and were first aimed
at making the guitar a synthesizer : some might want to put a bass
sound on the 6th and 5th strings, an organ sound on the next two
ones and then keeping the guitar sound for the last two strings.
This is one example of what could be done with an hexaphonic pi-
ckup and an hexaphonic-to-MIDI hardware converter. Plugin that
kind of pickup in software applications such as Max/MSP [15] and
PureData [57] can expand the guitar sound effects string by string
but allows more particularly to go even further in the segmenta-
tion of the fretboard. As an hexaphonic pickup directly provides a
string-per-string control of the guitar, coupling it with a polypho-
nic pitch estimation as described below enables you to use the fret
as the smallest element of your segmentation and to go deeper in
the management of your fretboard. One can think in a “classical
way” in terms of chords and scales or, in a more plastic way, in
terms of fretboard zones and shapes (chord or geometrical).

The tool we made gives one the possibility to create groups of
notes on the fretboard and then checks whether the played note(s)
belong(s) to one of the defined groups or not. Using the example of
the synthesizer guitar again, one can not only decide of the sound
or effect to apply on only one string but on all the note of a defi-
ned group. Zones of effects can then be defined on all the guitar
fretboard. We added a graphical visualization to this tool so as to
have a graphical feedback for the created groups or for the played
notes.

Another feature that our object handles is the possibility to
detect if a group has been entirely played, meaning if all notes
have been played without one extra note (not present in the group)
in between. Expanding a bit this entire played group property, we
can then recognize whether the group has been played as a chord,
as an arpeggio or as a simple group. A more detailed description
of this feature is done afterwards. A specific chord or a specific
note can then, for instance, be used to trigger sounds or change
mappings, etc...

3

http://www.cycling74.com
http://www.puredata.info

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

A first version of the tool has been made as Max/MSP and Pu-
reData patches. The final version has been written in Java in order
to enhance the speed of the recognition and to make it easier to use
as everything is gathered in one object to which messages are sent.
The choice of Java as the language to write the Fretboard Grouping
external was motivated by the development by Pascal Gauthier of
pdj [23], a java external plugin for PureData. This plugin is based
on the mxj Max/MSP object implementation and permits first to
write external for PureData in Java (which was not the case before)
and second, to use the same code to generate both Max/MSP and
PureData external which was not the case when developing in C
or C++.

FIGURE 3: Max/MSP help patch of the Fretboard Grouping tool

3.1.2.1. Graphical Visualization

We wanted to visualize the guitar fretboard considering its
physical parameters (number of strings, number of frets and tu-
ning), the groups the user is working with and the played notes
detecting by the polyphonic pitch estimation. Several parameters
are therefore customizable for the fretboard’s display :

– the guitar parameters (as mentioned above) : number of
strings and number of frets. The tuning parameter doesn’t
have a direct influence on the display, but enables the note
to be displayed on the right scale.

– the display parameters : strings spacing and fret spacing fac-
tor. These factors can easily lead to a non realistic represen-
tation of the fretboard, but they can definitely be helpful to
clearly see notes especially in the highest frets.

Other guitar fretboard visualization already exist. We can cite
for example the Frets On Fire [38] game (free version of the Guitar

Hero game) or the TuxGuitar [68] tablature editor and score viewer
software. The second was the most suited representation as the first
one gives a non realistic display of the fretboard.

As we wanted an easier integration with the Fretboard Grou-
ping tool and as we first needed a quick implementation, we de-
cided to developed the visualization part for the lcd object of
Max/MSP environment. Only the visualization for the lcd object
has been developed for the moment. Further investigations will
be led on the OpenGL visualization tool that can be used in both
software (GEM library for PureData [16] and jit.gl.sketch
object for Max/MSP).

3.1.2.2. Groups

FIGURE 4: Detection of the G chord

The construction of the groups one wants to work with follows
these steps :

– played or selected (directly on the display of the fretboard)
notes are added to the group

– when all the notes of the group have been selected, the
group needs to be saved

– when all the groups are defined, the file, containing the groups
definition, needs to be saved too

– read the file to use the groups
A display feature is accessible to give one the possibility to have a
visual feedback of which notes are in the group.

Two parameters define a group : completeness and time. The-
refor three types of group are defined :

4

http://www.le-son666.com/software/pdj/
http://fretsonfire.sourceforge.net
http://tuxguitar.herac.com.ar
http://gem.iem.at

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

– chords : all notes of a group are played (without extra-group
notes) simultanesouly

– arpeggio : all notes of a group are played (without extra-
group notes) not simultaneously but under a certain thre-
shold

– simple group : all notes of a group are played (without extra-
group notes) above a certain threshold

The discrimination between the different types of groups is,
for the moment, based on the time factor. Two thresholds are then
defined : one, discriminating between chord and arpeggio and the
other one discriminating between arpeggio and simple group. If all
notes of one group are played under this chord / arpeggio discrimi-
nation threshold the played group is recognized as a chord, if they
are played above this threshold and under the arpeggio / simple
group threshold it will be recognized as an arpeggio, and if it is
below this last threshold, it will be recognized as a simple group.
If notes are played interlaced with other notes (of other groups or
not in any groups), notes are just recognized as part of the groups.

3.2. Gestural Control : Rear-Mounted Pressure Sensors

The basic premise of this gestural control subproject was to
add pressure sensors to the back of an electric guitar in order to
add another expressive control to the sound for the guitarist. We
decided that one goal of this control should be that it should not
require the player to spend much time learning the controller, but
should feel like a natural extension of playing the guitar.

3.2.1. Sensors

Due to familiarity, we chose FSR pressure sensors to use for
this implementation. They are well-known as reliable and easy to
use. We made the decision to use their 4 cm square pressure sen-
sors because we felt that they would cover more area of the back
of the guitar. After some testing, it was determined that the 4 cm
square sensors may have been more sensitive than necessary for
this application, and the 1.5 cm round FSR pressure sensors might
have been a better choice for both sensitivity and placement on the
guitar body. This will need to be tested further in the future.

The sensors came with a prebuilt adjustment and op-amp cir-
cuit as well as an interface connector so that they could be used
with an Interface-Z MIDI controller interface [30].

Due to familiarity, ease, reliability, and interoperability with
the FSR pressure sensors, the Interface-Z was chosen as the inter-
face between the physical sensors and the computer using a MIDI
controller interface. The Interface-Z allows for up to 8 sensors
which vary a control voltage between 0 and 5 volts to be translated
into either a 7-bit or 10-bit MIDI controller value. Although the
10-bit controller value is split across two MIDI controllerrs. 7-bit
resolution was chosen because it was sufficient for this project.

Pressure-voltage curves are supplied by the manufacturer to
describe how the output voltage varies with supplied pressure. It
was experimentally determined that for the pressure levels seen at
the back of the guitar, the pressure sensors were operating nonli-
nearly. A y = x3 mapping was implemented to linearize the output
of the sensors.

An array of pressure sensors were chosen as the interface to
use instead of a position sensor, because the array of pressure sen-
sors could also provide total pressure as another control value It
was unknown how many sensors would need to be included in the
array to provide enough feedback for the type of control that we
wanted. Initially tests were run using only two sensors, but after

several players tested the system, we decided that three sensors
would be more appropriate. A four sensor array was never tested.

FIGURE 5: Rear of the guitar with the three pressure sensors

By having several different guitarists test the three array sys-
tem, we made two important discoveries : the system was extre-
mely sensitive to the bodyshape of the player, and the playing po-
sition of some players often caused one of the pressure sensors to
be favored inappropriately. The solution which we found for this
was to put a block of foam along the array between the guitar body
and the player’s body. This solution was excellent from a technical
standpoint, but something more durable would need to be used for
a longterm solution.

3.2.2. Mapping of Sensor Data to Control Values

In order to acquire the total pressure, ptot from the array, the
following equation was used.

ptot =

Pn
i=1 pi

n
(1)

5

http://interface-z.com

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

where n is the number of sensors and pi is the linearized control
value representing pressure on an individual sensor. The center of
pressure, Pc, along the array is given by a weighted average of
particles as follows.

Pc =

Pn
i=1 piPi

ptot
(2)

where Pi is the position of an individual sensor. This equation
is useful because the positions of the sensors do not need to be
evenly spaced.

The velocity of Pc, vc is derived using the following equation.

vc =
Pc(t +4t)

4t
(3)

where4t is 20 msec.
Control of effects and other parameters was tested using both

this velocity and a derived acceleration. We decided that in this
particular configuration using these higher order controls to di-
rectly control effects parameters was generally uncomfortable and
unnatural, but using a velocity threshhold as a trigger for effects
did feel natural. To allow for a natural velocity trigger, the thre-
shhold values are different in the positive (or right-turning) and
negative (or left-turning) directions.

After trying several different effects parameters, the choice
made for the proof of concept video was the following.

– Pc is mapped to the center frequency of a bandpass filter.
The range of Pc is mapped logarithmically between 600 Hz
and 4000 Hz.

– ptot is mapped to the Q of the same bandpass filter. The
range of ptot is mapped linearly to a Q value between 10
and 30.

– The velocity trigger is mapped to a gate to a delay line. The
gate opens for 300 msec and the delay is set to 300 msec
with a feedback factor of 0.8. The trigger values are −7.8
and 8.8 normalized pressure units per second.

These mappings provide an effective demonstration of the ca-
pabilities of the pressure sensor array as a sound/effects controller.

3.3. Audio Synthesis

3.3.1. Modal Synthesis

3.3.1.1. Background

Acoustics guitars, naturally producing a certain level of sound
thanks to their resonating hollow bodies, faced feedback issues
once amplifiers were introduced. Solid-body guitars, first designed
to solve these issues, are perceived by some players to afford less
playing nuances due to the reduced mechanical feedback of their
less resonating body, yet offering a more widespread palette of
sounds. Christophe Leduc designed an hybrid solution : the U-
Guitar [44, 45], a solid-body guitar with resting or floating sound-
board. Guitars with on-board DSP such as the Line6 Variax allows
the player to virtually choose several models of plucked stringed
instruments on one single real instrument. Amit Zoran’s Chame-
leon Guitar and reAcoustic eGuitar [73] allow the guitarist to rede-
sign the instrument virtually (by digital methods) and structurally
(by mechanical methods).

There has been much work in computer music exploring me-
thods for generating sound based on physical simulation [31, 14].
With Modalys, also usable in Max/MSP, Iovino et al. propose to
model an instrument by connecting elements and calculating the

modal parameters of the resulted assembly [31], yet it is tedious to
build complex models for any given geometry.

Penttinen et al. [58, 59] proposed a method for real-time gui-
tar body modulation and morphing, which has been recently im-
plemented in Matlab and C/C++ [70]. However, their method is
based on digital signal processing, essentially for computational
issues, and in particular maximal efficiency.

3.3.1.2. Theory

We propose to bring a physics-based approach to the multi-
modal guitar, so as to give control parameters that can be easily
mapped to parameters from the sensors. For this purpose, we chose
the modal analysis which consists of modeling the resonator, here
the guitar body, with its vibration modes. The microscopic defor-
mations that lead to sound are expressed as linear combinations
of normal modes. Modal parameters, i.e., frequencies, dampings,
and corresponding gains are extracted by solving the eigenproblem
with the use of a finite element method (see, for example, [53] for
more details). The sound resulting from an impact on a specific
location on the surface is then calculated as a sum of n damped
oscillators :

s(t) =

1X
n

aisin(wit)e
−dit (4)

where wi, di, and ai are respectively the frequency, the decay rate
and the gain of the mode i. The method preserves the sound variety
when hitting the surface at different locations.

In the multimodal guitar, the sounding guitar (the main body
without the strings) is modeled through a modal approach. In a
pre-processing, the modal parameters are extracted for each point
on the surface. We chose the method described in [61] due to its
robustness and multi-scale structure. It uses the SOFA Framework
[29] to get the mass and stiffness matrices . Specific material pro-
perties and resizement can be set for the sounding guitar. Modal
synthesis is especially well suited to model irrealistic objects.

During real-time, the resulted sounds are calculated through
a reson filter (similar to [17]). Modal sounds can also be convol-
ved with outputs of sensors on the fly, giving the user extended
flexibility for interactive performance.

FIGURE 6: Screenshot of an acoustic guitar modelled in the SOFA
Framework

6

http://chldc.free.fr/
http://www.thechameleonguitar.com
http://www.thechameleonguitar.com
http://www.sofa-framework.org

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

3.3.1.3. Interacting with modal sounds

Using the C/C++ code for modal synthesis of bell sounds from
van den Doel [18], we implemented a flext object [26, 27], thus
compliant with the PureData and Max/MSP environments.The pur-
pose of this tool is to provide more experience with modal sounds.
In this manner, interesting sounds can be easily obtained by convol-
ving modal sounds with user-defined excitations.

3.3.2. Infinite Sustain

The guitar is an instrument with a relatively short sustain (com-
pared to for ex. wind instruments). The electric guitar has addres-
sed this problem with various methods ; overdrive, compression
and feedback. In our application, we use additive and granular syn-
thesis to create a continous sound from a detected note or chord.

The Infinite Sustain tool goes through these steps :
– Attack ("note on") detection with Max/MSP bonk~ object
– Spectral composition analysis of the detected note at 2 points

(attack time + 100ms and 120ms)
– Synthesis of the sustained note using the 2 analysed spec-

trums (additive synthesis with the add_synthw~ object
by Todor Todoroff)

– Synthesis of a granular sustained tone using the munger~
object [3, 4] rewritten using flext object [26, 27]

– Mix of the two synthesis methods to create a lively sustai-
ned tone, with lots of timbral variation possibilities

– A tilt sensor controls the sustained tone playback volume

FIGURE 7: Screenshot of the Infinite Sustain tool

3.3.3. Rearranging Looper

Loop pedals are often used in a performance context to create
sound textures and grooves. One can be frustrated with the static
quality of the looped audio ; the same loop is played over and over
again, leading to boredom and to aesthetic similarity in mixed mu-
sic performances. We wanted to create a looper which could rear-
range the recorded audio. The program works like a beat slicer : the
incoming audio is analysed looking for attacks. An “event map”
is created according to the attack times. The events may then be
played back in any order. In this first version of the tool, the play-
back options are straight, backwards, and a specific random factor

ranging from 0 to 100. With random 0 the playback stays true to
the recorded audio, with random 100 the audio events are played
back totally randomly, creating a sonic mess highly inspiring.

The Rearranging Looper tool goes then through these steps :
– Record on and off activated by a 1-axis accelerometer on

the guitar’s head
– Write to a buffer, create a temporal event map with attack

detection (bonk~ object)
– Playback from the buffer
– Adjust behavior ; playback mode and randomness

The program is in its first version and will evolve towards more
complex/interesting playback behavior, controlled by the player
via sensors and playing.

FIGURE 8: Screenshot of the Rearranging Looper tool

3.3.4. Smart Harmonizer

The ability to know the exact note being played before harmo-
nizing, thanks to the hexaphonic pitch extraction algorithm des-
cribed above (section 3.1.1), opens new interesting possibilities.
In the framework of tonal music, those possibilities start with the
choice of a scale, referenced to a base or root note. We have imple-
mented some common scales like major, minor natural, minor har-
monic, minor melodic ascending and descending. Currently, there
is a coll object that loads a file containing the intervals in half
tones within an octave for each defined scale :

major, 0 2 4 5 7 9 11;
minor_natural, 0 2 3 5 7 8 10;
minor_harmonic, 0 2 3 5 7 8 11;
minor_melodic_asc, 0 2 3 5 7 9 11;
minor_melodic_desc, 0 2 3 5 7 8 10;

The selected set of intervals, chosen by name with a menu,
are repeated over the whole range of MIDI notes, starting from the
root note defined by the user, and stored in another coll object
containing all the notes of the chosen, now current, scale that will
be used by the harmonizer. More scales can be defined by the user
and it would also be quite easy to define a set of notes that don’t
repeat at each octave, simply by loading in the current scale coll
a list of notes belonging to the set contained in a text file. Those

7

http://puredata.info/Members/thomas/flext/
http://ico.bukvic.net/Max/disis_munger~_latest.zip
http://puredata.info/Members/thomas/flext/

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

FIGURE 9: Shown here with a synthetic test tone, the Max/MSP patch that extracts the pitches independently for each string, using an
hexaphonic microphone, and harmonizes the played notes in a smart way, i.e. taking into account the notes being played, a chosen scale
and desired intervals defined independently for each string.

sets could be defined using a virtual keyboard, a MIDI or OSC
input, defined with the Fretboard Grouping tool, or simply in a
text editor.

In order to define how to harmonize, we also need rules to
modify the desired intervals depending on whether or not the har-
monized note with the desired transposition factor is part of the
chosen scale. Therefore we use the following rules, also stored in
a text file loaded by a coll object, where the first interval is the
preferred one, and the second, the choice if the first fails to trans-
pose the note within the chosen scale :

unison, 0 0;
second, 2 1;
third, 4 3;
fourth, 5 6;
fifth, 7 6;
sixth, 9 8;
seventh, 11 10;
octave, 12 12;

In order to augment the flexibility of the program, those first
and second intervals can be freely entered by the user, including
fractional half-tones. Though the two proposed choices in the pre-
defined intervals will always yield at least one note in the scale for
traditional western scales, it may not be the case for non-western
ones or with non-integer half-tones. Therefore we added a third
choice (see Fig. 9). Experiments with a viola player and quarter
or eight-tones yielded very surprising and interesting results. But

the availability of three levels of choice allow also to force an in-
terval by specifying three times the same one, or to allow only
one interval if it fits within the scale and no transposition other-
wise, by specifying the desired interval as the first choice and 0
for the second and the third ones. We also added the possibility
to shift the result one octave down or up with the red menu (-,
0, +) at the right of the interval menu. The actual harmonization
is done with a combination of the psych~ and gizmo~ objects
whose levels may be adjusted differently for each string. We kept
the two algorithms, the first in the time domain and the second
in frequency domain, as they do sound quite differently. And, at
almost no cpu cost, one may define two additional sound transpo-
sitions with psych~. This can be used for chorus-like effects or
for octave doubling.

Thus, using the knowledge of the played notes, a scale or a set
of notes, and rules determining the desired harmonization factor
depending on the formers, we defined an adaptive transformation,
depending on the input notes. And different intervals or rules may
be applied individually to each guitar string.

We described how the transposition factor can be chosen in a
smart way, but there are times where one wants to mute the output
of the harmonizer. We implemented the following mute functions :

– Mute input notes outside the chosen scale : if the played
note is not in the scale, there will be no harmonizing.

– Mute output notes outside the chosen scale : if the input
note transposed following the user-defined rule doesn’t fit
in the chosen scale, it won’t be harmonized.

– Mute output notes outside range : a range is defined for each
string, from the lowest note playable on that string (the tu-

8

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

ning can be easily defined) to that note transposed by a user-
defined amount of semitones ; if the harmonized note would
fall outside the range, it isn’t harmonized.

– Mute harmonizer if cleared notes : the pitch extractor has
parameters that define what conditions stop the note. the
harmonization can be muted when a clear note condition is
met.

We might also want to prevent some played notes to be heard on
some strings. That would for instance be the case if some string/note
combinations are used as a kind of program change, to change a
preset that would for instance change the scale or the harmonizing
choices. This hasn’t been implemented yet.

Finally, it is possible to Harmonize using float pitch detection :
the harmonized note is "retuned", that is, transposed to the closest
tempered scale note, by taking into account the detected deviation
from the tempered note given by the pitch extractor. Besides allo-
wing the harmonizer result to be exactly in tune, it opens another
interesting application : if the harmonizing interval is set to uni-
son, the resulting note can create beatings in regard to the played
note when the string is bent, or simply thicken the sound as no
played note is exactly in tune, and as the deviation in cents from
the perfect tuning evolves over the duration of a note.

4. EDUTAINMENT SUB-PROJECT : STUDY
WORKBENCH

Knowing that fitting an hexaphonic pickup requires a struc-
tural modification of the guitar, will it help enhance the ergono-
mics (non-invasiveness) and allow a better performance in terms
of signal processing ? Should we use a low-cost alternative that re-
quires a webcam to analyse the guitarist’s gestures using computer
vision techniques [5, 6] and a monophonic guitar sound, so that to
extract all the necessary information of both methods through mul-
timodal fusion [64] ? In the following part, we will narrow down
the scope to focus on the multimodal musical transcription.

The precursor of the multimodal musical transcription is Gil-
let’s work transcribing drum sequences [24], where joint features
are used. Ye Wang borrowed the philosophy of the audio-visual
speech recognition to try to realize the violin transcription based
on the weighted sum of ouput values of modalities [69]. They both
show the trend and promising future of multimodal transcription.
Garry Quested and Marco Paleari separately proposed different
methods on the guitar with various modalities and deterministic
fusion methods [64, 56], where [56] produced 89% of the recogni-
tion rate. However, their simple deterministic nature of the fusion
schemes fails to handle missing samples in audio and dropping
frames in video, which are always an issue in the real-time ap-
plication, and unexpected output of modalities. Hence, the recor-
ded experiment data requires no information loss, which leads to
the demand of very expensive high end recording equipment and
unaffordable computation load for a real-time application. Moreo-
ver, the static weights on each modality in the fusion scheme do
not allow the system to adjust according to the reliability of mo-
dalities, such as change of lighting condition to cameras, and our
crucial objective—user skills.

Considering their experience and working towards a real-time
audio-visual system of the multimodal musical transcription, we
build the system with the following characteristics :

1. Have low-cost hardware and software setup

2. Provide reliable real-time modalities

3. The audio modality is the main source of the information
(see section 4.2), while the video modality provides sup-
plementary information (see section 4.3)

4. Provide low information loss by building a stable data ac-
quisition approach (see section 4.5)

5. Have a probability-based fusion scheme to handle missing
data, and unexpected or misinterpreted results from single
modalities to have better multi-pitch transcription results
(see section 4.4)

6. Include the updatable weights of each modalities in the fu-
sion scheme to allow system to adjust according to users
and reliability of modalities.

7. Visualize simultaneously the guitar score and feedback from
the score following evaluation (see section 4.6)

A real-time system of the multimodal musical transcription
mainly consists of three parts : data acquisition, modality construc-
tion, machine learning and multimodal fusion. In the following
sections, we first introduce our design and implementation of the
overall system, and then detail them right after that.

4.1. System Overview

In our system, two webcams and a finger tracking algorithm
form the video modality, soundcard and a polyphonic pitch esti-
mator form the audio modality, and finally a multimodal algorithm
fuse these two modality, shown in the top figure of Fig. 10. A recor-
ding is system is also necessary during all the process from design
and fine-tune modalities, to multimodal fusion mechanism design,
shown in the bottom figure of Fig. 10. The system hardware over-
view is shown in Fig. 11, where we adopts the most common and
low-cost devices, including :

– 1 laptop with Microsoft Windows XP
– Two USB Logitech webcams (two concurrent high speed

Sony PS3 Eye cannot currently run at the same time on the
same computer)

– 1 Line6 Variax 300 guitar
– 1 TASCAM US-144 USB soundcard
– 1 external FireWire/USB hard-drive for storing offline trai-

ning data (non-necessary for the final system)
We also use an ARToolKitPlus [1] marker on the guitar headstock
and colored markers for fingertracking on finger nails.

The problem now urns to choose a open source/low cost plat-
form which can provide stable, simple, and quick development
on data acquisition, modality construction, and machine learning
and multimodal fusion, where any of them requires tedious work
and complicated analysis process, based on our low cost hardware
setup. EyesWeb [28] from InfoMus Lab, DIST-University of Ge-
nova, has been a very successful platform for audio-visual real-
time applications since 1997, providing an intuitive visual graphi-
cal development environment and powerful support without charge.
Pure Data is also another effective open source real-time graphical
programming environment for audio, video, and graphical proces-
sing [57]. However, they can not easily make lossless synchro-
nized recording using multi-cameras and one microphone at the
same time. Their lack of support of easily integrating programs in
various languages slows down the early prototyping process.

OpenInterface [42, 43], developed by TELE Lab, University
of Louvain, is an ideal choice in our application, which allows to
fast prototype real-time multimodal interactive systems (or online
system with constant delay), and implement synchronized raw data

9

soft:ARToolKitPlus
http://www.eyesweb.org
http://www.openinterface.org

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

recorder. It provides a graphical programming environment and in-
terfacing programs in all the main-stream programming languages
such as C/C++, Java, Matlab [48] and .NET. Shown in Fig. 10, all
of the data acquisition, finger tracking, pitch estimation, and mul-
timodal fusion algorithm, and recording function is implemented
in OpenInterface.

Openinterface

Video API

Audio API

Finger
Tracking
Algorithm

Polyphonic
Pitch
Estimation
Algorithm

Webcams

Soundcard

Windows

Multimodal
Fusion

Openinterface

Video API

Audio API

Webcams

Soundcard

Windows

Recording

FIGURE 10: System Software Architecture Overview. Top : Run-
time. Bottom : Recording

!"#"$%&
'($)%$*

External
FireWire/USB
Hardisk

+,-.($/(0&/1$.""#)-.2#,*/'($)%$

2 WebcamsExternal USB
Soundcard

Laptop

FIGURE 11: System Hardware Overview

Providing higher abstraction and statement power, Matlab al-
lows programmers to design and implement algorithm more easily
and faster. Thanks to the easy integration of the Matlab engine
by OpenInterface, we can easily have a recording system of raw
data, quickly integrate an “online” complete system with a short
constant delay, and comfortably display the results. Our finger tra-
cking and pitch estimation algorithm implementation also benefit
from the same fact.

Our system diagram using OpenInterface both for online and
offline recording is shown in Fig. 12, including the multi-cameras,
audio, and ARToolkitplus components. Except the other compo-
nents for video-driving strict synchronization, the Matlab proces-
sor component calls recording function of raw data, finger tra-
cking, and pitch estimation algorithms in Matlab.

FIGURE 12: System Diagram (online and offline recording) using
OpenInterface [42, 43]

4.2. Audio Analysis : Polyphonic Pitch Estimation from a Mo-
nophonic Signal

4.2.1. Background

As opposed to the method proposed in section 3.1.1, we wan-
ted to perform an estimation of the fundamental frequency of each
note played by the musical instrument without using expensive or
non-factory devices such as hexaphonic pickups, not available on
most affordable guitars.

The third running of the annual Music Information Retrieval
Evaluation eXchange (MIREX) [19] gives an up-to-date overview
of methods and algorithms for multiple fundamental frequency es-
timation & tracking (see the contest results here [51]), yet it fo-
cuses on accuracy of the results, thus algorithms don’t need to run
in real time, a mandatory feature for our system.

Due to the limited time available, we decided to use methods
that we already implemented, whose source code was available,
and which were designed to work in real time.

Klapuri’s method [36] doesn’t implement polyphony estima-
tion, but the output salience values can be used to estimate poly-
phony (eq.(8) in [36]). The polyphony estimation is not very re-
liable however, especially if levels of component sounds vary (not
equal levels).

Arshia Cont’s realtime algorithm [13] is based on a non-negative
sparse decomposition of the incoming signal as a product of two
matrices :

– the first matrix is filled with the spectrum of all the single
notes that the instrument can produce, the notes being re-
corded offline one-by-one so as to train the system ;

– the second matrix, a vector, indexes all the notes that are
detected in the audio signal, containing a high value at each
row that corresponds to each detected note, a low value for
all other non-present notes.

As sound is harmonic by nature, harmonics can overlap between
notes. “Sparse” means that the whole playing should be described
by the smallest number of note components, given a predefined
maximum number of decomposition iterations. Arshia Cont offers
for free his algorithm as a transcribe~ [13, 12] object, for
Max/MSP [15] and PureData [57] : to our knowledge, it is the
only realtime implementation available, for free, working inside

10

http://www.mathworks.com
http://www.openinterface.org
http://www.music-ir.org/mirex/
http://cosmal.ucsd.edu/arshia/index.php?n=Main.Transcribe
http://www.cycling74.com
http://www.puredata.info

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

the opensource PureData modular environment.
O’Grady and Rickard also proposed an algorithm based on

non-negative matrix decomposition, but running offline and requi-
ring an hexaphonic pickup [54].

4.2.2. Implementation

We used Arshia Cont’s realtime algorithm. In order to have
the algorithm work with guitar sounds, we had to record guitar
notes one-by-one so as to train the algorithm, using the Matlab
code Arshia Cont provided us.

We modified the C++ transcribe~ [13, 12] flext object
[26, 27] object and the Matlab template training source codes so
as to exchange template files between the two using MAT files,
instead of the former text files that caused us issues with parsing
on different OS platforms. We used libmatio, a LGPL C library
[47]. Additionaly to the template matrix contained in the template
file, we added metadata that is written on the MAT file after the
template training and loaded and parsed in the flext object :

– lowest_midi_pitch (21 for piano, 40 for guitar, 38 for
“Drop-D” guitar), defining how the pitch list is indexed ;

– fft_size and hop_size for a consistency check (MAT
file and the transcribe~ object settings values won’t
match, the user is adviced to change the object settings)

– (optional) instrument, author, institute, date
and email for further contacts

We hope that Arshia Cont will integrate our modifications to
the next transcribe~ release. Note that everything in the chain
can rely on free software as the template training works as well
with Octave [25].

Due to the fact that this algorithm has been shown to pro-
vide accuracy of at most 88% [11] for the piano, visual modality
should help increase the robustness of the pitch transcription and
provide extra information such as identifying which strings have
been played.

4.3. Computer Vision Analysis

As a role to provide finger positions and complement the audio
modality, we survey the literature and seek a robust method, which
should estimate the three dimensional position of four fingers—the
two dimensional position above the fingerboard plane and the dis-
tance between fingers and the fingerboard. [71] detected fingers on
the violin by using the Condensation algorithm [33], in which the
joint finger model dynamics and the Gaussian skin color model
are employed. However, for the note inference, it does not provide
satisfying results (14.9% full-matches and 65.1% partial matches
between audio and video results), perhaps because of lack of ano-
ther camera to provide three-dimensional information.

We adopt a method based on Chutisant Kerdvibulvech’s work
which made use of two webcams and an integration of the baye-
sian classifier, ARTag, and Particle Filtering and colored markers
to provide four finger three dimensional positions relative to the
marker mounted on the guitar [35]. Though Chutisant Kerdvibul-
vech’s paper does not provide scientific evaluation of precision un-
der a large scale test, which is one of the drawbacks and challenges
to adopt this method, his survey based on several user survey did
showed a subjective positive tracking result.

In his method, the ARTag marker appearing on the images is
used to calculate projection matrices used later in the tracking al-
gorithm to map the three dimensional guitar coordinate into two
dimensional image coordinate [35]. Bayesian classifier and image

processing techniques form a probability map for each pixel of
the whole images using pre-trained classifier and adaptive clas-
sifier, which is used to reduce the impact from slight change of
the lighting condition [35]. Combining these parameters, particle
filtering tracks finger markers by generating particles in a three-
dimensional guitar coordinate system, and has them mapped onto
the two dimensional coordinate using the projection matrices given
the probability map as weights on each particle, and finally ob-
tain the average finger markers three-dimensional positions. Two
images are used to enhance the precision of the results [35].

Based on the main concepts, we re-implement this method
with some modifications : Instead of using ARTag to calculate the
projection matrix for calibration of the guitar position, we make
use of ARToolKitPlus [1] due to its advantages of high recognition
performance, free charge, and the lack of availability of ARTag.
Image processing techniques also have been modified. The simpli-
fied structure of our implementation has been shown in Fig. 13.
The tracking result is shown in Fig. 14. Since we use OpenCV as
a main interfacing for video acquisition, the maximum frame rate
we can reach is 15 fps due to the limitation of the OpenCV.

!"#$%&'(#$)'*+,--./#$'
0%&/1&

2#31-'*45"#6#$#-7

8&-914$#-7'
0%$&#:';<

8&-914$#-7'
0%$&#:';=

8-6#$#-7'->'
*+,--./#$
'0%&/1&'%73'
?#7@1&A-%&3

2#31-

B>>.#71'
,&%#7#7@ 8%&$#4.1

?#.$1@

C%D16#%7
E.%66#>#1&

*+,--./#$

0%&/1&'
,&%4/#7@

B>>.#71
2#31-

B7.#71'
C%D16#%7
,&%#7#7@

0%&/1&'
8-6#$#-76

#7
!"#$%&'

E--&3#7%$1

0%&/1&6

BF17E2

?"&$)1&'
?"6#-7'

?#7@1&A-%&3'%73'
0%&/1&'
G&%(#7@

FIGURE 13: Our Finger Tracking Implementation

FIGURE 14: Tracking Result of Our Implementation

4.4. Multimodal Fusion and Mapping Scheme

4.4.1. State-of-the-art

Since each modality has its own recognition in each moda-
lity, we should choose one among methods of intermediate fusion.

11

http://cosmal.ucsd.edu/arshia/index.php?n=Main.Transcribe
http://puredata.info/Members/thomas/flext/
http://sourceforge.net/projects/matio/
http://www.octave.org
soft:ARToolKitPlus

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

The intermediate fusion methods, like probabilistic graphical mo-
del methods, such as Bayesian networks, can handle the imperfect
data, generate its conclusion so that its certainty varies according
to the input data [34]. Bayesian Networks or Dynamic Bayesian
networks is very suitable for fusing our noisy or sometimes even
missing results of locating finger position and audio pitch recogni-
tion results. Hence, for the fusion method, we adopt the Bayesian
Networks method here. In our proposed scheme, weights of each
modalities, representing the reliability of each modality, and ma-
jority vote techniques are included. The overall system is shown in
Fig. 15.

FIGURE 15: Overall Fusion Scheme

4.4.2. Preprocessing system

In order to produce the best reasonable finger-pitch pairs to
train and test the Bayesian Networks (BN). We need first to syn-
chronize the recognition streams of the two modalities, and then
the paring process is needed as the proposed system is a multi-
pitch score follower, where more than one finger is tracked and
maybe more than one pitch may be played at the same time.

4.4.3. Synchronization problem of two modalities

For the video modality, the frame rate is fixed as 30fps. For
the audio modality, consisting in estimating the fundamental fre-
quency of each note played by the musical instrument, we used Ar-
shia Cont’s realtime algorithm [13]. The frame rate of informative
data stream produced from this algorithm is not fixed. It presents
the pitch and its amplitude when there are one or more onset(s) are
detected. Thus we use these onset signals as the signs of synchro-
nization. When there is an onset appearence at time TP , we look
for the closest TF from the video frames and the corresponding
frame FTp. Then we group the pitch happened at TP and fingers
positions from frame FTp together and mark these groups by TP .

4.4.4. Event pairing problem of synchronized data

After the synchronization processing, now we have the tem-
poral groups containing the data from the audio and video moda-
lities. What we do following that is to pair the pitch data with the
most probable finger that played this pitch. In order to do that, we
first mapping the pitch to the guitar finger board area according
to Fig. 16. As a single pitch could be related to three String-Fret

combinations in maximum, we list all possible String-Fret combi-
nations down.

FIGURE 16: Pitch-Finger board mapping table

Then, we need to map the finger data (X, Y, Z) to the corres-
ponding String-Fret as well. In guitar playing, there are six notes
that can be played without pressing any fret. They are called 0-
Fret notes and they appear commonly during the guitar playing.
In the cases that a 0-Fret note is played, it is highly possible that
no finger would be tracked on the corresponding 0-Fret area. Our
solution to this problem is setting the default frets that are pressed
on all strings to 0 at each video modality frame. Then a later modi-
fication is made when the finger position data (X, Y, Z) indicates
so. When we deal with the finger data (four fingers in maximum)
in a temporal group. We look at the Z first. If Z is smaller than
or equal to Zth , then we map the corresponding X-Y pair to the
String-Fret combination to change the default fret(which is 0) on
that string. The Zth here means the threshold Z of pressing. If a Z
is smaller than Zth, we consider this finger as in the pressing status.
In our case, we chose 8 mm as the Zth. During the mapping from
X-Y pair to String-Fret combination, we use the idea of ’area’ to
classify the finger position. The ’area’ of ’string SA and fret FB’ is
defined as from the midpoint of SA−1 and SA, Mid(SA−1, SA), to
Mid(SA, SA+1) vertically and from Mid(FB−1, FB) to Mid(FB

and FB+1) horizontally. In the case of first string or zero fret, we
use Mid(S2, S1) and Mid(F1, F0) as the low vertical boundary
and left horizontal boundary respectively. The distance from the
nut to the nth fret can be expressed as

D = L− L

2
n
12

(5)

So the distance from the nut to the midpoint of nth and (n + 1)th

fret can be expressed as

Dm = (1− 1 + 2
1
12

2
n+13

12

)L (6)

In our case, L is equal to 640mm and the distance between two
strings is 7.2mm in average. Due to the lack of absolute paralle-
lism of six strings, the square area we use here is an approximate
one. In order to achieve higher accuracy, we are going to use Neu-
ral Networks as the nonlinear transformation function between X-
Y and String-Fret in the future improvement. As this is the proto
type of system and the lack of parallelism is so little, we will use
these square areas for now.

After we scan all the finger data in one temporal group, we
will have six Fret-String combinations from video modality and
in maximum three Fret-String combinations from audio modality
from that group. Then, we calculate the closest (highest possibi-
lity) finger that related to the pitch. Now, we have the pitch that is
played and the related finger area ready for the BN.

12

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

4.4.5. Fusion System : Bayesian Network

Inspired by [50], we created a Bayesian network as our fusion
scheme, shown in Fig. 17. According to [50], a Bayesian network
over universe U with observed evidence e is expressed in the fol-
lowing equation :

P (U, e) =
Y

A∈U

P (A|pa(A)) ·
Y

i

ei (7)

where P (U, e) is the joint probability of U and e, and pa(A)
is the parent set of A. In our network, the observed evidence e is
the observed outputs from the pitch detection, the frets and strings
from the finger position tracked, as well as their corresponding
weight. The evidences are represented by the nodes Pitch Detec-
ted (PD), Fret Detected (FD), String Detected (SD) and their
corresponding weight is represented by node WA and WV res-
pectively. Note (N), Fret(F), String(S) and Image(I) are the unob-
served variables. The Combination Played node (C) is the played
score and the fret as well as string that player used which we are
trying to find. Each arrow represents a conditional probability. The
values of the observed evidence are represented by PD = pd,
FD = fd, SD = sd, WA = wa, and WV = wv, respectively.
The inference equation is then derived as :

P (C|N, I) =P (Pd) · P (wa) · P (fd) · P (sd) · P (wv)

· P (N |PD, Wa) · P (F |fd, wv)

· P (S|sd, wv) · P (I|F, S)

(8)

FIGURE 17: The Bayesian Network Diagram

4.4.6. Modality Weight Computation and Majority Vote

Before we feed the data to the BN, the Modality Weight WA
and WV reflect the reliability of the two modalities and how much
they affect the fusion result. WA and WV are decided by two
factors : modality failure detection and modality reliability.

Modality failure detection try to detect if the device is failure :
if either audio or video signal within a time frame has no values,
then the modality should be give zero weight until non-zero signals
are detected.

It is not easy to determine reliability of the each modalities,
though many parameters in the algorithm of the two modalities

provide limited clues. Hence, instead of having an explicit setup
of the weights of the two modalities, by the concept of majo-
rity vote, we can generate several reasonably distributed sets of
weights. They are multiplied by corresponding failure detection
result and then normalized. Each pair of weights will lead to a spe-
cific classification results in the Bayesian network, and the result
of the majority is our final result. It provide a way to avoid calcula-
ting weights explicitly, which might not improve or even degrade
the performance of the system.

4.5. Data Recording for Training

While our aim is to recognize multiple notes at the same time,
it is reasonable to first reach the single note recognition and the
the two note recognition as our preliminary goals. We further limit
the range to recognize notes into first 30 positions, that is, from
1E to 29Ab in Fig. 16. To train the system, at least 10 pairs of
video and audio information in each class should be recorded. We
have made 300 data samples for single notes, while having to make
10 notes for each common frequent pair(should be much less than
C30

2 · 10 = 4350).
In the recording setup, projection matrices from two images

are computed, synchronized, and stored together with an audio
vector of 4096 samples in 44.1 kHz, and two images in the size of
288×352 in the same data packet. All these data will be fed to the
following recognition algorithm to produce the results. The two
images with the ARToolKitPlus [1] output are shown in Fig. 18.
The runtime display of the recording system is shown in Fig. 19,
where sound samples, projection matrices are drawn at the right
hand side using the function of Matlab.

FIGURE 18: Guitar tracking with ARToolkitplus

4.6. Visualization

4.6.1. Available guitar score visualization tools

So as to provide both a visualization of the score to be played
by the guitarist and visual feedback on how accurately the score
is actually played by the guitarist, we initially planned to modify

13

soft:ARToolKitPlus

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

FIGURE 19: Data Recording Runtime

an open-source equivalent of the Guitar Hero video game, named
Frets On Fire [38], because of its engaging and fun visual inter-
face. While we are still in the design phase of our system and it
can not yet estimate in real time the accuracy of the guitar playing,
we needed to use a tool that assisted us for the recording of the
system training database and the testing of the system. A guitar
score visualization application such as TuxGuitar [68] is better ai-
med for that purpose, as it allows to browse the score backwards
in time once the score has been played and annotated. Once the
real time implementation of our system will be ready, TuxGuitar
will also position itself a perfect companion to Frets On Fire, com-
plementary to the entertaining feel of the latter because the former
displays the score with classical and tablature notations necessary
to learn the guitar further than technique and fluidity.

The FTM library [66, 32], already available for Max/MSP and
in development for PureData [72], offers a classical score visua-
lization with the ftm.editor object. Once the porting in Pure-
Data is mature enough and if a guitar score visualization is added
to the ftm.editor, this could be seen as another alternative that
would be more tightly integrated into the main framework integra-
ting modalities, PureData for the realtime version of our system.

4.6.2. Choice and modifications

We achieved initial results by creating an OpenSoundControl
plugin for TuxGuitar that allows remote control through the OSC
protocol, both on Matlab and patcher applications such as Pd and
Max/MSP. Currently supported commands are :

– loading a score file (/load <file_location>),
– initiating the playback (/play),
– stopping or pausing the playback (/stop).

We still need to modify the plugin so as to provide the visual
feedback on the accuracy of the playing. Current notes to be played
on the score are colored in red by default in TuxGuitar. We plan to
use colors as well to label and distinguish accurately played notes
(for example, in green) and wrong/missed notes (for example, in
orange) and the note to be played on the score (for example, in red,
the most salient color).

FIGURE 20: Mockup of the TuxGuitar [68] interface featuring co-
lored notes giving a visual feedback of the score following. A first
version of our OSC communication plugin is also set on.

5. CONCLUSION AND PERSPECTIVES

5.1. Performance Toolbox

We achieved a usable toolbox for hexaphonic or monophonic
guitar. These tools are available for the Max/MSP [15] and/or Pu-
reData [57] environments. We worked on all the part of the chain of
augmented music, from extraction and use of audio signal features
to digital audio effects manipulated by gestural control with sen-
sors. All the tools (Polyphonic Pitch Extraction, Fretboard Grou-
ping, Rear-Mounted Pressure Sensors, Modal Synthesis, Infinite
Sustain, Rearranging Looper, Smart Harmonizer) need to be de-
veloped for both environments (i.e Max/MSP and PureData) and
documentation and/or tutorials will be provided so that everything
can be freely downloadable on the eNTERFACE’09 and numediart
websites and be directly usable.

Concerning the Fretboard Grouping tool, more efforts will be
put in the chord / arpeggio discrimination (i.e not to base it only on
the time needed to play the group). To achieve a better discrimi-
nation, one track that we will follow, will be to add time between
notes directly in the group definition. Doing that, the chord / ar-
peggio discrimination would become obsolete as groups will not
be considered anymore only as a gathering of notes but as a ga-
thering of notes through time. A group record feature can then be
added to the module so that one can record a group played in a
specific way.

Physical sound synthesis sometimes lacks realism. One inter-
esting approach can be to use pre-recorded sounds relevant to spe-
cific play on guitar such as sliding, slapping, etc.., to add more
texture to the modal sounds. Since we proposed granular synthe-
sis to enrich the guitar sustain, we could collect audio grains for
enhancement of both modal sounds and sustains. By using the ap-
proach from Picard et al. [60], audio grains could be automatically

14

http://fretsonfire.sourceforge.net
http://tuxguitar.herac.com.ar
http://ftm.ircam.fr
http://tuxguitar.herac.com.ar
http://www.cycling74.com
http://www.puredata.info
http://www.puredata.info
http://www.infomus.org/enterface09/
http://www.numediart.org

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

extracted from recordings. In addition, the audio grains could be
properly retargeted to specific outputs of sensors during runtime.

5.2. Study Workbench

We built a careful design of the multimodal score following
system. We prototyped many algorithms for : finger tracking, gui-
tar headstock 3D location, multiple pitch estimation from a mo-
nophonic audio signal of the guitar, bayesian networks for multi-
modal fusion and synchronized modalities recording (mono audio,
multiple cameras). Each module works efficiently offline and se-
parately. We build an initial synchronized recordings database.

We still need to do a proper study and working implemen-
tation of the score visualization and visual feedback of the score
following. We need to test and improve the system so that it can
run in real time. We also need to undertake user testing so as to
evaluate and validate the precision and performance of the system.
To complement the multimodal fusion, we could build an onto-
logy of the guitar playing domain, by extracting, classifying and
interpreting “guitar techniques”, such as “bends”, “hammer-ons”,
“pull-offs”, “artificial harmonics”, the plucking position [67].

6. ACKNOWLEDGMENTS

Christian Frisson, Anderson Mills, Loïc Reboursière and To-
dor Todoroff are supported by numediart, a long-term research
program centered on Digital Media Arts, funded by Région Wal-
lonne, Belgium (grant N◦716631).

Wen-Yang Chu is funded by the FRIA grant of FNRS, Région
Wallonne, Belgium.

Otso Lähdeoja’s work is partially funded by Anne Sedes from
CICM, University of Paris 8.

Cécile Picard work is partially funded by Eden Games, and
ATARI Game Studio in Lyon, France.

Ao Shen is supported and funded by his supervisor Neil Cooke
and EECE Department, University of Birmingham.

We would like to thank all the organizers from the eNTER-
FACE’09 Summer Workshop on Multimodal Interfaces, hosted at
InfoMus lab, Casa Paganini, Genova, Italy, from July 13th to Au-
gust 8th, where the 1-month workshop of this project took place.

We would like to thank Ashia Cont (IRCAM) for having provi-
ded us the source codes for the transcribe~ flext object (C++)
[12] and the related template training (Matlab). We are grateful to
Damien Tardieu (FPMs/TCTS) for having helped us modify the
aforementioned code to adapt it to the guitar.

We offer thanks to Emmanuel Vincent and Anssi Klapuri who
provided us their implementation of the polyphonic pitch estima-
tion.

We show our appreciation to Jean-Yves Lionel Lawson (UCL-
TELE) for assisting building the recording and integrated OpenIn-
terface system of the “edutainment” part.

We would like to thank Otso Lähdeoja, Anne Sedes and the
organizing team from CICM, for having welcomed us at Identités
de la Guitare Electrique - Journées d’étude interdisciplinaires à
la Maison des Sciences de l’Homme Paris Nord, on May 18-19
2009, to present the objectives of the Multimodal Guitar project.
A publication on the proceedings will follow [22].

7. REFERENCES

7.1. Scientific references

[2] John Bowers and Phil Archer. « Not Hyper, Not Meta, Not
Cyber but Infra-Instruments ». In: Proceedings of the 2005
International Conference on New Interfaces for Musical
Expression (NIME05). 2005. Pp. 5–10. P.: 1.

[3] Ivica Ico Bukvic et al. « munger1~ : towards a cross-
platform swiss-army knife of real-time granular synthesis ».
In: Proc. ICMC. 2007. URL: http://ico.bukvic.
net/PDF/ICMC2007_munger1.pdf. P.: 7.

[5] Anne-Marie Burns. « Computer Vision Methods for Guita-
rist Left-Hand Fingering Recognition ». MA thesis. McGill
University, 2006. Pp.: 1, 9.

[6] Anne-Marie Burns and Marcelo M. Wanderley. « Visual
Methods for the Retrieval of Guitarist Fingering ». In: Pro-
ceedings of the 2006 International Conference on New In-
terfaces for Musical Expression (NIME06). Paris, France
2006. Pp. 196–199. Pp.: 1, 9.

[7] Ozan Cakmakci, François Bérard, and Joëlle Coutaz. « An
Augmented Reality Based Learning Assistant for Electric
Bass Guitar ». In: Proceedings of the International Confe-
rence on Human Interaction (CHI03). 2003. P.: 1.

[8] Gavin Carfoot. « Acoustic, Electric and Virtual Noise : The
Cultural Identity of the Guitar ». In: Leonardo Music Jour-
nal 16 (2006). Pp. 35–39. P.: 1.

[9] Alain de Cheveigné. « Procédé d’extraction de la fréquence
fondamentale d’un signal sonore au moyen d’un dispositif
mettant en oeuvre un algorithme d’autocorrélation ». Pat.
01 07284. 2001. P.: 2.

[10] Alain de Cheveigné and Hideki Kawahara. « YIN, a funda-
mental frequency estimator for speech and music ». In: J.
Acoust. Soc. Am. 111.4 (Apr. 2002). Pp. 1917–1930. P.: 2.

[11] Arshia Cont. « Realtime Multiple Pitch Observation
using Sparse Non-negative Constraints ». In: Internatio-
nal Symposium on Music Information Retrieval (ISMIR).
2006. URL: http://cosmal.ucsd.edu/arshia/
papers/ArshiaCont_ismir2006.pdf. P.: 11.

[13] Arshia Cont, Shlomo Dubnov, and David Wessel. « Real-
time Multiple-pitch and Multiple-instrument Recogni-
tion For Music Signals using Sparse Non-negative
Constraints ». In: Proceedings of Digital Audio Ef-
fects Conference (DAFx). 2007. URL: http : / /
cosmal . ucsd . edu / arshia / index . php ? n =
Main.Transcribe. Pp.: 10–12.

[14] Perry R. Cook. Real Sound Synthesis for Interactive Appli-
cations. A. K. Peters, 2002. P.: 6.

[17] Kees van den Doel, Paul Kry, and Dinesh K. Pai. « Fo-
leyAutomatic : Physically-based Sound Effects for Interac-
tive Simulation and Animations ». In: ACM SIGGRAPH 01
Conference Proceedings. 2001. Chap. Modal Synthesis for
Vibrating Objects. ISBN: 978-1568812151. URL: http:
//www.cs.ubc.ca/~kvdoel/publications/
foleyautomatic.pdf. P.: 6.

15

http://www.numediart.org
http://www.infomus.org/enterface09/
http://www.infomus.org/enterface09/
http://www.infomus.org
http://ico.bukvic.net/PDF/ICMC2007_munger1.pdf
http://ico.bukvic.net/PDF/ICMC2007_munger1.pdf
http://cosmal.ucsd.edu/arshia/papers/ArshiaCont_ismir2006.pdf
http://cosmal.ucsd.edu/arshia/papers/ArshiaCont_ismir2006.pdf
http://cosmal.ucsd.edu/arshia/index.php?n=Main.Transcribe
http://cosmal.ucsd.edu/arshia/index.php?n=Main.Transcribe
http://cosmal.ucsd.edu/arshia/index.php?n=Main.Transcribe
http://www.cs.ubc.ca/~kvdoel/publications/foleyautomatic.pdf
http://www.cs.ubc.ca/~kvdoel/publications/foleyautomatic.pdf
http://www.cs.ubc.ca/~kvdoel/publications/foleyautomatic.pdf

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

[18] Kees van den Doel and Dinesh K. Pai. « Audio Anec-
dotes III : Tools, Tips, and Techniques for Digital Audio ».
In: ed. by Ken Greenebaum and Ronen Barzel. 3rd ed.
Source code available at http://www.cs.ubc.ca/
~kvdoel/publications/srcmodalpaper.zip.
A. K. Peter, 2006. Chap. Modal Synthesis for Vibrating Ob-
jects, pp. 99–120. ISBN: 978-1568812151. URL: http:
//www.cs.ubc.ca/~kvdoel/publications/
modalpaper.pdf. P.: 7.

[19] J. Stephen Downie. « The music information retrieval eva-
luation exchange (2005-2007) : A window into music in-
formation retrieval research ». In: Acoustical Science and
Technology 29.4 (2008). Pp. 247–255. P.: 10.

[20] Richard Mark French. Engineering the Guitar : Theory and
Practice. Springer, 2008. ISBN: 9780387743684. P.: 1.

[21] G. Friedland, W. Hurst, and L. Knipping. « Educational
Multimedia ». In: IEEE Multimedia Magazine 15.3 (2008).
Pp. 54–56. ISSN: 1070-986X. DOI: 10.1109/MMUL.
2008.71. P.: 1.

[22] Christian Frisson et al. « eNTERFACE’09 Multimodal
Guitar project : Performance Toolkit and Study Work-
bench ». In: Actes des Journées d’étude interdisciplinaires
sur l’Identités de la Guitare Electrique. (to appear). Maison
des Sciences de l’Homme Paris Nord, Paris, France 2010.
URL: http://www.guitarelectrique.fr. P.: 15.

[24] O. Gillet and G. Richard. « Automatic transcription of drum
sequences using audiovisual features ». In: IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Pro-
cessing, 2005. Proceedings.(ICASSP’05). Vol. 3. 2005. P.:
9.

[26] Thomas Grill. « flext - C++ layer for Pure Data & Max/MSP
externals ». In: The second Linux Audio Conference
(LAC). 2004. URL: http://lad.linuxaudio.org/
events/2004_zkm/slides/thursday/thomas_
grill-flext.pdf. Pp.: 7, 11.

[31] Francisco Iovino, René Caussé, and Richard Dudas.
« Recent work around Modalys and Modal Synthesis ». In:
ICMC : International Computer Music Conference. Thes-
saloniki Hellas, Greece 1997. Pp. 356–359. P.: 6.

[33] M. Isard and A. Blake. « Contour tracking by stochastic
propagation of conditional density ». In: Lecture Notes in
Computer Science 1064 (1996). Pp. 343–356. P.: 11.

[34] Alejandro Jaimes and Nicu Sebe. « Multimodal human-
computer interaction : A survey ». In: Computer Vision and
Image Understanding 108.1-2 (2007). Special Issue on Vi-
sion for Human-Computer Interaction. Pp. 116–134. ISSN:
1077-3142. P.: 12.

[35] Chutisant Kerdvibulvech and Hideo Saito. « Guitarist Fin-
gertip Tracking by Integrating a Bayesian Classifier into
Particle Filters ». In: Advances in Human-Computer Inter-
action 2008 (2008). P.: 11.

[36] A. Klapuri. « Multiple fundamental frequency estimation
by summing harmonic amplitudes ». In: 7th Internatio-
nal Conference on Music InformationRetrieval (ISMIR-06).
2006. P.: 10.

[37] David Kushner. « The Making of The Beatles : Rock
Band ». In: IEEE Spectrum (Oct. 2009). Pp. 26–31.
URL: http://spectrum.ieee.org/consumer-
electronics/gaming/the-making-of-the-
beatles-rock-band. P.: 1.

[39] Otso Lähdeoja. « An Approach to Instrument Augmenta-
tion : the Electric Guitar ». In: Proceedings of the 2008
Conference on New Interfaces for Musical Expression
(NIME08). 2008. P.: 1.

[40] Otso Lähdeoja. « Guitare électrique augmentée : une ap-
proche du contrôle gestuel des “effets” de la guitare élec-
trique ». In: Articles des Journées d’Informatique Musicale.
2008. P.: 1.

[41] Otso Lähdeoja. « Une approche de l’instrument aug-
menté : Le cas de la guitare électrique ». In: Actes
de la conférence francophone d’Interaction Homme-
Machine (IHM). 2007. URL: http://www.lahdeoja.
org/ftplahdeoja/augmented_guitar/otso.
lahdeojaIHM08.pdf. P.: 1.

[42] J.Y.L. Lawson et al. « An open source workbench for pro-
totyping multimodal interactions based on off-the-shelf he-
terogeneous components ». In: Proceedings of the 1st ACM
SIGCHI symposium on Engineering interactive computing
systems. ACM. 2009. Pp. 245–254. Pp.: 9, 10.

[44] Christophe Leduc. « Instruments de musique à cordes frot-
tées ou pincées ». Pat. FR2677160. Dec. 4, 1992. P.: 6.

[45] Christophe Leduc. « Musical instruments having bowed or
plucked strings ». Pat. US5339718. Aug. 23, 1994. P.: 6.

[46] Nicolas Leroy, Emmanuel Fléty, and Frederic Bevilacqua.
« Reflective Optical Pickup For Violin ». In: Proceedings
of the 2006 International Conference on New Interfaces for
Musical Expression (NIME06). 2006. P.: 1.

[50] Ankush Mittal and Ashraf Kassim. Bayesian Network
Technologies : Applications and Graphical Models. Her-
shey, PA, USA: IGI Publishing, 2007. ISBN: 1599041413,
9781599041414. P.: 13.

[52] Axel Nackaerts, Bart De Moor, and Rudy Lauwereins.
« Measurement of guitar string coupling ». In: Proceedings
of the International Computer Music Conference (ICMC).
2002. URL: ftp://ftp.esat.kuleuven.ac.
be/pub/SISTA/nackaerts/reports/report_
ICMC2002.ps.gz. Pp.: 2, 3.

[53] James F. O’Brien, Chen Shen, and Christine M. Gatchalian.
« Synthesizing sounds from rigid-body simulations ». In:
Proceedings of the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer animation (SCA’02). ACM, 2002.
Pp. 175–181. ISBN: 1-58113-573-4. P.: 6.

[54] Paul D. O’Grady and Scott T. Rickard. « Automa-
tic Hexaphonic Guitar Transcription Using Non-Negative
Constraints ». In: Proceedings of the Irish Signal and
Systems Conference. 2009. URL: http://eleceng.
ucd.ie/~pogrady/papers/OGRADY_RICKARD_
ISSC09.pdf. P.: 11.

[55] Dan Overholt. « The Overtone Violin ». In: Proceedings of
the 2005 Conference on New Interfaces for Musical Expres-
sion (NIME05). 2005. P.: 1.

16

http://www.cs.ubc.ca/~kvdoel/publications/srcmodalpaper.zip
http://www.cs.ubc.ca/~kvdoel/publications/srcmodalpaper.zip
http://www.cs.ubc.ca/~kvdoel/publications/modalpaper.pdf
http://www.cs.ubc.ca/~kvdoel/publications/modalpaper.pdf
http://www.cs.ubc.ca/~kvdoel/publications/modalpaper.pdf
http://dx.doi.org/10.1109/MMUL.2008.71
http://dx.doi.org/10.1109/MMUL.2008.71
http://www.guitarelectrique.fr
http://lad.linuxaudio.org/events/2004_zkm/slides/thursday/thomas_grill-flext.pdf
http://lad.linuxaudio.org/events/2004_zkm/slides/thursday/thomas_grill-flext.pdf
http://lad.linuxaudio.org/events/2004_zkm/slides/thursday/thomas_grill-flext.pdf
http://spectrum.ieee.org/consumer-electronics/gaming/the-making-of-the-beatles-rock-band
http://spectrum.ieee.org/consumer-electronics/gaming/the-making-of-the-beatles-rock-band
http://spectrum.ieee.org/consumer-electronics/gaming/the-making-of-the-beatles-rock-band
http://www.lahdeoja.org/ftplahdeoja/augmented_guitar/otso.lahdeojaIHM08.pdf
http://www.lahdeoja.org/ftplahdeoja/augmented_guitar/otso.lahdeojaIHM08.pdf
http://www.lahdeoja.org/ftplahdeoja/augmented_guitar/otso.lahdeojaIHM08.pdf
ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/nackaerts/reports/report_ICMC2002.ps.gz
ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/nackaerts/reports/report_ICMC2002.ps.gz
ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/nackaerts/reports/report_ICMC2002.ps.gz
http://eleceng.ucd.ie/~pogrady/papers/OGRADY_RICKARD_ISSC09.pdf
http://eleceng.ucd.ie/~pogrady/papers/OGRADY_RICKARD_ISSC09.pdf
http://eleceng.ucd.ie/~pogrady/papers/OGRADY_RICKARD_ISSC09.pdf

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

[56] M. Paleari et al. « A multimodal approach to music trans-
cription ». In: 15th IEEE International Conference on
Image Processing, 2008. ICIP 2008. 2008. Pp. 93–96. P.:
9.

[58] Henri Penttinen, Aki Härmä, and Matti Karjalainen. « Di-
gital Guitar Body Mode Modulation With One Driving
Parameter ». In: Proceedings of the COSTG-6 Conference
on Digital Audio Effects (DAFX-00). Sound samples avai-
lable at http://www.acoustics.hut.fi/demos/
dafx2000-bodymod/. 2000. P.: 6.

[59] Henri Penttinen, Matti Karjalainen, and Aki Härmä. « Mor-
phing Instrument Body Models ». In: Proceedings of the
COSTG-6 Conference on Digital Audio Effects (DAFX-01).
Sound samples available at http://www.acoustics.
hut.fi/demos/dafx2001-bodymorph/. 2001. P.:
6.

[60] Cécile Picard, Nicolas Tsingos, and François Faure. « Re-
targetting Example Sounds to Interactive Physics-Driven
Animations ». In: AES 35th International Conference on
Audio for Games. 2009. URL: http://www-sop.
inria.fr/reves/Basilic/2009/PTF09. P.: 14.

[61] Cécile Picard et al. « A Robust And Multi-Scale Mo-
dal Analysis For Sound Synthesis ». In: Proceedings of
the International Conference on Digital Audio Effects.
2009. URL: http://www-sop.inria.fr/reves/
Basilic/2009/PFDK09. P.: 6.

[62] Cornelius Poepel. « Synthesized Strings for String
Players ». In: Proceedings of the 2004 Conference on New
Interfaces for Musical Expression (NIME04). 2004. P.: 1.

[63] Miller Puckette. « Patch for guitar ». In: Pd-convention.
Workshop Pd patches available here http://crca.
ucsd . edu / ~msp / lac/. 2007. URL: http : / /
crca.ucsd.edu/~msp/Publications/pd07-
reprint.pdf. P.: 2.

[64] G Quested, R D Boyle, and K Ng. « Polyphonic
note tracking using multimodal retrieval of musical
events ». In: Proceedings of the International Compu-
ter Music Conference (ICMC). 2008. URL: http://
www.comp.leeds.ac.uk/roger/Research/
Publications/Garry08.pdf. P.: 9.

[66] Norbert Schnell et al. « FTM - Complex Data Structures
for Max ». In: Proceedings of the International Confe-
rence on Computer Music (ICMC). 2005. URL: http://
recherche.ircam.fr/equipes/temps-reel/
articles/ftm.icmc2005.pdf. P.: 14.

[67] Caroline Traube and Philippe Depalle. « Extraction of the
excitation point location on a string using weighted least-
square estimation of comb filter delay ». In: Proceedings
of the Conference on Digital Audio Effects (DAFx). 2003.
URL: http://www.elec.qmul.ac.uk/dafx03/
proceedings/pdfs/dafx54.pdf. P.: 15.

[69] Y. Wang, B. Zhang, and O. Schleusing. « Educational violin
transcription by fusing multimedia streams ». In: Procee-
dings of the international workshop on Educational mul-
timedia and multimedia education. ACM New York, NY,
USA. 2007. Pp. 57–66. P.: 9.

[70] Shi Yong. Guitar Body Effect Simulation : a warped LPC
spectrum estimation and a warped all-pole filter imple-
mented in Matlab and C++. Course Project MUMT 612 :
Sound Synthesis and Audio Processing. McGill Univer-
sity, 2007. URL: http://www.music.mcgill.ca/
~yong/mumt612/mumt612.html. P.: 6.

[71] B. Zhang et al. « Visual analysis of fingering for pedagogi-
cal violin transcription ». In: Proceedings of the 15th inter-
national conference on Multimedia. ACM New York, NY,
USA. 2007. Pp. 521–524. P.: 11.

[72] IOhannes Zmölnig et al. « Freer Than Max - porting FTM to
Pure data ». In: Proceedings of the Linux Audio Conference
(LAC-2008). 2008. URL: http://lac.linuxaudio.
org/2008/download/papers/20.pdf. P.: 14.

[73] Amit Zoran and Pattie Maes. « Considering Virtual and
Physical Aspects in Acoustic Guitar Design ». In: Procee-
dings of the 2008 Conference on New Interfaces for Musical
Expression (NIME08). 2008. P.: 6.

7.2. Software, hardware and technologies

[1] « ARToolKitPlus ». v.2.1.1. 2006. URL: http :
/ / studierstube . icg . tu - graz . ac . at /
handheld _ ar / artoolkitplus . php. Pp.: 9,
11, 13.

[4] Ivica Ico Bukvic et al. « munger1~ : towards a cross-
platform swiss-army knife of real-time granular synthe-
sis ». v. 1.3.2. 2009. URL: http://ico.bukvic.net/
Max/disis_munger~_latest.zip. P.: 7.

[12] Arshia Cont. « transcribe , Pd/Max/MSP object for Real-
time Transcription of Music Signals ». 2007. URL: http:
//cosmal.ucsd.edu/arshia/index.php?n=
Main.Transcribe. Pp.: 10, 11, 15.

[15] Cycling’74. « Max/MSP ». URL: http : / / www .
cycling74.com. Pp.: 2, 3, 10, 14.

[16] Mark Danks et al. « GEM (Graphics Environment for Mul-
timedia) ». v.0.91. 2009. URL: http://gem.iem.at.
P.: 4.

[23] Pascal Gauthier. « pdj, a java external plugin for pure data ».
URL: http://www.le-son666.com/software/
pdj/. P.: 4.

[25] « GNU Octave ». v.3.2.2. 2009. URL: http://www.
octave.org. P.: 11.

[27] Thomas Grill. « flext - C++ layer for Pure Data & Max/MSP
externals ». retrieved from SVN. 2009. URL: http://
puredata.info/Members/thomas/flext/. Pp.:
7, 11.

[28] DIST-University of Genova InfoMus Lab. « The EyesWeb
XMI (eXtended Multimodal Interaction) platform ». Ver-
sion 5.0.2.0. URL: http://www.eyesweb.org. Pp.:
1, 9.

[29] INRIA. « The SOFA Framework (Simulation Open Fra-
mework Architecture) ». GPL license. 2009. URL: http:
//www.sofa-framework.org. P.: 6.

[30] Interface-Z. « Sensors and sensor interfaces ». URL:
http://interface-z.com. Pp.: 2, 5.

17

http://www.acoustics.hut.fi/demos/dafx2000-bodymod/
http://www.acoustics.hut.fi/demos/dafx2000-bodymod/
http://www.acoustics.hut.fi/demos/dafx2001-bodymorph/
http://www.acoustics.hut.fi/demos/dafx2001-bodymorph/
http://www-sop.inria.fr/reves/Basilic/2009/PTF09
http://www-sop.inria.fr/reves/Basilic/2009/PTF09
http://www-sop.inria.fr/reves/Basilic/2009/PFDK09
http://www-sop.inria.fr/reves/Basilic/2009/PFDK09
http://crca.ucsd.edu/~msp/lac/
http://crca.ucsd.edu/~msp/lac/
http://crca.ucsd.edu/~msp/Publications/pd07-reprint.pdf
http://crca.ucsd.edu/~msp/Publications/pd07-reprint.pdf
http://crca.ucsd.edu/~msp/Publications/pd07-reprint.pdf
http://www.comp.leeds.ac.uk/roger/Research/Publications/Garry08.pdf
http://www.comp.leeds.ac.uk/roger/Research/Publications/Garry08.pdf
http://www.comp.leeds.ac.uk/roger/Research/Publications/Garry08.pdf
http://recherche.ircam.fr/equipes/temps-reel/articles/ftm.icmc2005.pdf
http://recherche.ircam.fr/equipes/temps-reel/articles/ftm.icmc2005.pdf
http://recherche.ircam.fr/equipes/temps-reel/articles/ftm.icmc2005.pdf
http://www.elec.qmul.ac.uk/dafx03/proceedings/pdfs/dafx54.pdf
http://www.elec.qmul.ac.uk/dafx03/proceedings/pdfs/dafx54.pdf
http://www.music.mcgill.ca/~yong/mumt612/mumt612.html
http://www.music.mcgill.ca/~yong/mumt612/mumt612.html
http://lac.linuxaudio.org/2008/download/papers/20.pdf
http://lac.linuxaudio.org/2008/download/papers/20.pdf
http://studierstube.icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php
http://studierstube.icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php
http://studierstube.icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php
http://ico.bukvic.net/Max/disis_munger~_latest.zip
http://ico.bukvic.net/Max/disis_munger~_latest.zip
http://cosmal.ucsd.edu/arshia/index.php?n=Main.Transcribe
http://cosmal.ucsd.edu/arshia/index.php?n=Main.Transcribe
http://cosmal.ucsd.edu/arshia/index.php?n=Main.Transcribe
http://www.cycling74.com
http://www.cycling74.com
http://gem.iem.at
http://www.le-son666.com/software/pdj/
http://www.le-son666.com/software/pdj/
http://www.octave.org
http://www.octave.org
http://puredata.info/Members/thomas/flext/
http://puredata.info/Members/thomas/flext/
http://www.eyesweb.org
http://www.sofa-framework.org
http://www.sofa-framework.org
http://interface-z.com

Actes des Journées d’étude sur les Identités de la Guitare Electrique, Maison des Sciences de l’Homme Paris Nord, 18-19 Mai 2009

[32] IRCAM. « FTM ». URL: http://ftm.ircam.fr. P.:
14.

[38] Sami Kyöstilä et al. « Frets On Fire ». Version 1.3.110.
URL: http://fretsonfire.sourceforge.net.
Pp.: 4, 14.

[43] Lionel Lawson. « The OpenInterface platform ». 2009.
URL: http://www.openinterface.org. Pp.: 9,
10.

[47] « MAT File I/O Library ». v. 1.3.3 used, LPGL li-
cense. 2009. URL: http://sourceforge.net/
projects/matio/. P.: 11.

[48] MathWorks. « Matlab ». v. 2008b. URL: http://www.
mathworks.com. P.: 10.

[49] Keith Mc Millen. « StringPort ». URL: http://www.
keithmcmillen.com. P.: 2.

[51] « Multiple Fundamental Frequency Estimation & Tracking
Results ». 2007. URL: http://www.music-ir.org/
mirex/2007/. P.: 10.

[57] « pd-extended, a PureData installer including most of
the libraries from the Pd CVS repository ». Most recent
release (0.40.3). URL: http://puredata.info/
downloads. Pp.: 1–3, 9, 10, 14.

[65] Roland. « GK3 hexaphonic pickup and related hardware ».
URL: http://www.roland.com. P.: 2.

[68] « TuxGuitar ». v. 1.1, GPL license. 2009. URL: http://
tuxguitar.herac.com.ar. Pp.: 4, 14.

18

http://ftm.ircam.fr
http://fretsonfire.sourceforge.net
http://www.openinterface.org
http://sourceforge.net/projects/matio/
http://sourceforge.net/projects/matio/
http://www.mathworks.com
http://www.mathworks.com
http://www.keithmcmillen.com
http://www.keithmcmillen.com
http://www.music-ir.org/mirex/2007/
http://www.music-ir.org/mirex/2007/
http://puredata.info/downloads
http://puredata.info/downloads
http://www.roland.com
http://tuxguitar.herac.com.ar
http://tuxguitar.herac.com.ar

	1 Introduction
	1.1 The guitar, a marker of telecommunications technologies
	1.2 From guitar learning towards educational games

	2 Two subprojects, two applications
	2.1 A gestural/polyphonic sensing/processing toolbox to augment guitar performances
	2.2 An interactive guitar score following environment for adaptive learning

	3 Artistic sub-project: Performance Toolbox
	3.1 Audio Analysis
	3.1.1 Polyphonic Pitch Estimation
	3.1.2 Fretboard Grouping

	3.2 Gestural Control : Rear-Mounted Pressure Sensors
	3.2.1 Sensors
	3.2.2 Mapping of Sensor Data to Control Values

	3.3 Audio Synthesis
	3.3.1 Modal Synthesis
	3.3.2 Infinite Sustain
	3.3.3 Rearranging Looper
	3.3.4 Smart Harmonizer

	4 Edutainment sub-project: Study Workbench
	4.1 System Overview
	4.2 Audio Analysis: Polyphonic Pitch Estimation from a Monophonic Signal
	4.2.1 Background
	4.2.2 Implementation

	4.3 Computer Vision Analysis
	4.4 Multimodal Fusion and Mapping Scheme
	4.4.1 State-of-the-art
	4.4.2 Preprocessing system
	4.4.3 Synchronization problem of two modalities
	4.4.4 Event pairing problem of synchronized data
	4.4.5 Fusion System: Bayesian Network
	4.4.6 Modality Weight Computation and Majority Vote

	4.5 Data Recording for Training
	4.6 Visualization
	4.6.1 Available guitar score visualization tools
	4.6.2 Choice and modifications

	5 Conclusion and Perspectives
	5.1 Performance Toolbox
	5.2 Study Workbench

	6 Acknowledgments
	7 References
	7.1 Scientific references
	7.2 Software, hardware and technologies

